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Abstract —A wavegnide-cavity oscillator, applicable to power-combhring

circuits, has been developed using probe for coupling between active device

and, cavity, No Iossy stabifiiing element is ‘reqnired. Tire control of output

power, oscillation freqnency, and injection locking bandwidth are per-

formed easily. Ontput power of 44 mW and de-RF conversion efficiency of ‘a~~=
33.2 percent were obtained at 9.2GHz for a single-device low-power FET ~ +~ ~~~~~~~
oscillator. A simple technique of cascading the pretrmed oscillator modules PROBE LOAD

was nsed to constrrrct mnltiple-device oscillators incorporating np to four
‘ [k)

FET’s with combining efficiency of about 100 percent.

I. INTRODUCTION

G ALLIUM ARSENIDE FET’s offer attractive perfor-

mance as microwave power sources, especially be-

~:wi \zo

cause of their efficiency and output power capabilities F ‘1% ~’)

which have been steadily improving for the last few years

[1]. For further increase of the output power from, FET Fig. 1. (a) A waveguide-cavitysingle-deviceoscillator and (b) its equiva-

amplifiers several combining techniques have been devel- lent circuit.

oped [2]; however, no work has been reported on adding

the power from FET oscillators. In the present paper, a II. DESCRIPTION AND ANALYSIS

waveguide-cavity oscillator is described which can be used Fig. l(a) shows a single-device oscillator of the proposed
to combine power from individual FET devices with high type in which an active device is placed at one end of a

efficiency. coaxial transformer. The other end of the transformer is

Manuscript received December 4, 1981; revised March 8, 1982. coupled to the cavity by a probe. The cavity in turn is

A. Materka is with the Research Institute of Electronics, Shizuoka coupled to the matched waveguide through an inductive
University, Hamamatsu 432, Japan, on leave from the Institute of Elec-
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window. An equivalent circuit of the oscillator, for fre-
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University, Hamamatsu432, Japan. is shown in Fig. l(b). The active device is represented by a
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one-port whose admittance Y~( A, ~) has its real part nega-

tive in a certain frequency range, where A is the amplitude

of RF voltage across the device terminals at the frequency

~. The LCR parallel circuit represents the cavity. XP is the

probe reactance and the ideal input transformer (n ~: 1)

represents the probe coupling. Z= denotes the characteristic

impedance of the coaxial transformer whose length is 1~.

20 stands for the waveguide characteristic impedance while

the ideal output transformer (nz: 1) represents the induc-

tive window coupling.

The active device is loaded by an admittance Y~( ~ )

which is seen from the port a – a’ looking toward the

cavity. For sustained steady-state oscillation the following

well-known condition must be satisfied:

–YD(AO, fo) =yL(fo) (1)

where AO and f. are, respectively, an amplitude and

frequency of oscillation.

Let us assume that the device admittance is weakly

dependent on frequency and monotonously dependent on

A. It can then be represented by the so called device line

[3], shown in Fig. 2. On the other hand, the probe input

admittance plots a circle on the Smith chart, illustrated by

the same figure. To obtain the oscillation in the vicinity of

the cavity resonant frequency (j), a coacxial transformer

length must be selected, resulting in a new device line (Fig.

2) which represents the admittance Y~ seen at the terminals

b – b’ of the equivalent circuit.

The input coupling coefficient (~, ) for the probe, placed

at the point of maximum electric field in the rectangular

cavity, is given as [4]

—(:)’t’n’(%)‘2)B,= g = ‘g’z,
where a, b, c are the cavity dimensions, dP is the probe

length, and the other symbols have their customary mean-

ing. On the other hand, the output coupling coefficient

(P2), for inductive window coupling, can be approximated

as [5]

(3)

where d ~ is the window width. From (2) and (3), the turns

ratios n, and n ~ dependence on, respectively, dp and d ~

can be evaluated and used in a design procedure. As in the

case of other cavity oscillators, there is a freedom in

selecting the values of PI and P2 for a given probe input

admittance (corresponding, e.g., to maximum output power

from the oscillator). This permits the independent adjust-

ment of the external quality factor of the cavity, related,

e.g., to the injection locking bandwidth. The control of the

main oscillator parameters can be performed easily in the

proposed circuit (by adjusting the probe length dp, window

width dw, and cavity resonant frequency f,), without sig-

nificant constructional changes (cf. [6]).

An N-device oscillator of the present type consists of N

active devices, loaded by probes, coupled to the electric

field in a TE,0 ~ rectangular cavity and spaced half a

wavelength apart. The condition for mode-free operation

DEVICE LINE , -YD

/

F1g

-Y;

2. Graphrc representation of the oscillation condition.

of this oscillator,

cavity, is given as

It is seen (Fig. 2

with the same resonant mode of the

7], [8]

_y; #l
jXp “

(4)

that condition (4) is satisfied if the

coaxial transformer length is chosen as described earlier.

The approach utilized in this paper is similar to that of

Kurokawa [7]. The difference between the properties_ of

these two oscillators originates from the way in which the

input coaxial line is connected with the cavity. In the

circuit of [7], the extra length of the input line, extended

beyond the physical area of coupling, is responsible for an

unstable oscillator work, if shortcircuited. To compensate

this effect, a lossy element is necessary. On the contrary, in

the circuit of Fig. l(a), the probe constitutes a natural

extension of the inner conductor of the coaxial line, and,

therefore, no stabilizing load is required.

III. REALIZATION

To obtain oscillation k X-band an arrangement sche-

matically shown in Fig. 3 was used. A microstrip FET

circuit was substituted as the active device. A Hewlett–

Packard HFET- 1101 unit was mounted in this circuit

which was fabricated on 0.031 in Duroid substrate. The

“active device” was tuned to exhibit a maximum negative

conductance at a desired frequency ( ~0 = 9.2 GHz in the

present example). The measured device admittance of a

typical FET circuit is shown in Fig. 4. The transistor was

biased at V~~ = –0.5 V (lD = 1~~~/2) and V~~ = 4.0 V.

The measured input admittance of the loading circuit,

for several values of window width and fixed position of

the cavity tuner, is also plotted in Fig. 4. It is seen that

oscillation condition (1) is satisfied in the oscillator circuit

discussed for d ~ <10 mm. Also, the following should be

noted.

a) The output power is dependent on frequency, and,

therefore, to obtain the maximum power, oscillation

frequency must be kept close to 9.2 GHz.

b) The difference between G~(O, f ) and G~(PO, f ) at 9.2

GHz is rather small.l Then, if the active device is

1This property seems to come from the features of the FET device.

Further related works are planned on other FET circuit configurations.
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Fig. 3. An experimental single-device FET oscillator.
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Fig. 4. Measured output admittance YD of the FET active circuit and
input admittance YL of the loading circuit. O— —O load admittance

locus, YL( ~ )/ YO. ❑ — — ❑ small-signaf device line, – YD(O, ~ )/ YO,

A — —A large-signal device line, – YD( PO, ~0)/ YO. Frequencies in
gigahertz, YO= 20 mS, PO stands for the RF power generated at&

expected to operate over a very wide temperature range,

a compromising effort should be made to ensure stable

operation at power near to its maximum. ( GD, the

device conductance, depends on temperature.)

IV. EXPERIMENTS

A. Single-Device Oscillator

Fig. 5 shows the measured characteristics of a single-de-

vice oscillator as previously described. No spurious oscilla-

tion, tuning difficulties, or hysteresis effects were observed

during the experiment. As the window width was varied

from 7.0 mm to 9.8 mm, the output power changed from

11 mW to 40 mW and the de-RF efficiency from

8.5 percent to 29.2 percent. The frequency of oscillation

1239
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Fig. 5. Measured characteristics of a single-device FET oscillator.

TABLE I
RESULTS OF INJECTION LOCKING EXPERIMENT: P.= 43 mW,

~0 = 9.1 GHz, P,/PO = 0.1

dp. (m) 4,5 5,0 5,4 5,8

% (.. ) 8.1 8.7 9,5 10.0

Afm (MHZ) 22 29 38 45

decreased as the window width increased, as shown in Fig.

5. As expected, no oscillation was sustained for dw >9.8

mm. Also, no peak value in the PO dependence on window

width was observed (Fig. 5). In sp’ite of this, no related

instabilities took place in the experiments conducted in

ordinary temperature conditions.

The output power and efficiency dependence on gate

and drain voltages were found typical for an FET oscillator

[9]. For dw = 9.8 mm, the maximum output power of 44

rnW with efficiency of 25.0 percent were measured at

VG~= – 0.2 V and V~~ = 4.5 V, while the efficiency

reached its maximum value of 33.2 percent, with PO= 26

mW, at V — –0.5 V, and V~~ = 3.0 V.

Experifin;s on injection locking were performed using

the single-device oscillator containing a Mitsubishi MGF-

1400 device with 1~~~ =65 mA. The probe length and

window width had been changed so that for every given

value of dP the window width was adjusted to obtain

PO=43 mW.. The associated oscillation frequency changes

were compensated using the cavity tuner to keep the

frequency constant, ~0 = 9.1 GHz. Next, the injection lock-

ing bandwidth (A fm) was measured at Pi/PO = 0.1, where

Pi stands for the injected power. The results are given in

Table I. The locking bandwidth was doubled, at power and

frequency both constant, without changing the cavity di-

mensions. In other experiments, the A fmvalues up to 175

MHz were measured for longer probes and reduced cavity

depth. A typical output power variation with injection

signal frequency (f) is shown in Fig. 6.

All the obtained results compare favorably with the

predicted oscillator performance.

B. Multiple-Device Oscillators

To combine power from two FET oscillators of the

proposed type, the single-device circuit was first built using
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Fig. 6. A typical output power variation with injection signal frequency.
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Fig. 8. Single-device module used in the power combinmg experiments.

an HFET- 1101 device. The measured power and frequency

characteristics of this oscillator are shown in Fig. 7. Next,

the second oscillator was constructed in the form shown in

Fig. 8. It was inserted in between the first oscillator and the

inductive window to obtain the two-device arrangement.

Prior to doing this, the module of Fig. 8 was tuned to have

characteristics similar to the first oscillator (Fig. 7). A short

circuit was placed at the plane P of the module during

tuning.

The results of power-combining experiments using these

two single-device modules connected in cascade are again

shown in Fig. 7. The curve representing the output power

is shifted toward the higher values of window width as

compared to those obtained for the single-device circuits,

in agreement with [7]. At dw = 11.8 mm, output power

reaches the maximum value of 86 mW which is less than

the sum of the maximum power measured for the free-run-

ning single-device modules (51.0 mW+41.5 mW). This is

TABLE II
RESULTS OF POWER-COMBINING EXPERIMENTS: f. = 9.2 GHz

NUMBER WI NDO!4 OUTPUT DC-RF COME1NING

OF WIDTH POWER EFFICIENCY EFFICIENCY

DEVICES (..) (row) (%) (%)

2 11,8 94 29,3 102

5 13,6 153 29.7 103

4 14!0 171 28.8 98

because the frequency of oscillation was, in the case of

two-device circuits, higher by about 120 MHz than the

frequency at which the single-device modules had been

tuned for maximum power (Fig. 7). After tuning the cavity

resonant frequency downward by a screw-tuner, output

power of 94 mW at 9.2 GHz was obtained from the

two-device oscillator with d ~ = 11.8 mm (see Table II)

which corresponds to a combining efficiency of 102 per-

cent.

A three-device oscillator was constructed by adding the

third pretuned module to the previously characterized pair.

Again, an oscillation frequency increase was observed

(about 170 MHz) as compared to the free-running

frequency of single-device circuits (Fig. 7). The oscillator

performance obtained after cavity tuning is presented in

Table II along with the data measured for the four-device

circuit which was constructed and tuned in the same way

as its predecessors. In all cases, combining efficiency of

about 100 percent was obtained, showing once again the

usefulness of the cavity-combining arrangements [10].

All the multiple-device oscillators readily generate the

combined power after applying dc bias with no power or

frequency discontinuities at any bias conditions. The out-

put power and de-RF conversion efficiency dependence

on gate and drain voltages are similar to those of single-

device circuits.

V. CONCLUSIONS

A waveguide-cavity oscillator, applicable to power-com-

bining circuits, has been developed using probe for input

coupling. Results of experiments at 9.2 GHz using low-

power FET’s demonstrate de-RF efficiency of 33.2 percent

for a single-device circuit and about 100 percent of com-

bining efficiency for multiple-device oscillators, incorporat-

ing up to four transistors. Other solid-state active devices

are also applicable to the proposed circuit. Experimental

data from a stable four-Gunn device (NEC GD-511 AA)

combiner have been obtained in our laboratory.
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Millimeter-Wave Antenna and Mixer Diode:--.

An Embryonic Millimeter-Wave IC
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Abstract —A monolithic silicon integrated circuit consisting of a mixer

diode and an afl-dielectric receiving antenna has been built and tested at 85

GHz. Radiation is coupled into the device opticafly with a coupling loss of

2.7 dB. No external metaf structure is required for coupling. The design

can be used efficiently at considerably higher frequencies, and can be.

elaborated into more complex integrated circuits. From measurements of
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video responsivity the losses of various parts of the device are estimated. A

simple theory of conversion efficiency is found to agree well with experi-

ment% this theory is then used to predict the performance of improved

versions of the device. The conversion efficiency obtained with this demon-

stration device is low; it is shown, however, that acceptable conversion

efficiencies can be obtained with a more advanced diode fabrication

technology using epitaxial Si or GRAs. Integrated millimeter-wave re-

ceivers of this kind should be snitable for shoti-path terrestrial communica-

tions, in applications where compactness and low cost are required.

1. INTRODUCTION

A NUMBER OF different waveguide technologies are

available for use in the “near-millimeter” regime of

100–300 GHz. These include conventional hollow metal

waveguide, fin line, various strip lines, microstrip, dielectric
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